On Hilbert coefficients and sequentially generalized Cohen–Macaulay modules

نویسندگان

چکیده

This paper shows that if [Formula: see text] is a homomorphic image of Cohen–Macaulay local ring, then text]-module sequentially generalized and only the difference between Hilbert coefficients arithmetic degrees for all distinguished parameter ideals are bounded.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Hilbert Coefficients and Northcott’s Inequality

Let R be a Cohen-Macaulay local ring of dimension d with infinite residue field. Let I be an R-ideal that has analytic spread `(I) = d, Gd condition and the Artin-Nagata property AN − d−2. We provide a formula relating the length λ(In+1/JIn) to the difference PI(n)−HI(n), where J is a general minimal reduction of I, PI(n) and HI(n) are the generalized Hilbert-Samuel polynomial and the generaliz...

متن کامل

*-frames for operators on Hilbert modules

$K$-frames which are generalization of frames on Hilbert spaces‎, ‎were introduced‎ ‎to study atomic systems with respect to a bounded linear operator‎. ‎In this paper‎, ‎$*$-$K$-frames on Hilbert $C^*$-modules‎, ‎as a generalization of $K$-frames‎, ‎are introduced and some of their properties are obtained‎. ‎Then some relations‎ ‎between $*$-$K$-frames and $*$-atomic systems with respect to a...

متن کامل

Variational inequalities on Hilbert $C^*$-modules

We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory  on  Hilbert $C^*$-modules is studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2022

ISSN: ['1793-6829', '0219-4988']

DOI: https://doi.org/10.1142/s0219498824500555